

1

POTENTIAL FIELD MULTI-OBJECTIVE OPTIMIZATION FOR
ROBOT PATH PLANNING USING GENETIC ALGORITHM

HUSSEIN HAMDY SHEHATA*

Systems Technology and Design Methodology, Hamburg University of Technology
, JOSEF SCHLATTMANN

21073 Hamburg, Germany

Path planning and autonomous navigation algorithms play a vital role in the field of
robotics. Amongst these, the potential field algorithm is widely used due to its elegant
mathematical model. Although it serves the basic purpose of avoiding obstacles, it is
bounded by particular restrictions. The use of a virtual obstacle along with potential field
algorithm is a lucrative approach to overcome these limitations. This work aims at
optimizing certain parameters involved in the virtual obstacle concept by the use of Non-
Dominated Sorting Genetic Algorithm II (NSGA II). It is advisable to maintain a safety
margin around the obstacle and to maneuver efficiently without oscillations as it moves
close to the obstacle. Furthermore, the size of the robot also affects its motion. This paper
takes into account all these factors during the optimization process. The results have
proven its feasibility and validity in unknown environments.

1. Introduction

Robotics has been an exciting field for researchers for a very long time.
Advancements in technology and the need for more automation in daily life lead
to new and increasing challenges in this field. The robot should plan a path that
enables it to avoid collision with the obstacles. Amongst many algorithms, the
potential field algorithm is widely used. The Artificial Potential Field (APF)
method is analogous to a ball rolling downhill. It is first proposed by Khatib [1]
for manipulators and mobile robots. Koren and Borenstein [2] described the
virtual force field concept and the limitations were identified [2]. An improved
wall following behavior coupled with potential field was proposed by Zhu,
Zhang, and Song [3]. Jia and Wang [4] represented obstacles as a set of linear
segments along their boundary and defined the repulsive potential as a line
integral along its contour. Calculating linear integral increases the computational
cost during online path planning. Velagic, Lacevic, and Osmic [5] combined the
APF method with an obstacle pruning method that used the concept of visibility
field to solve the problem of Goals Not Reachable due to Obstacles Nearby
(GNRON). Yin and Yin [6] modified the attractive potential by including the

* Corresponding author: Tel.: +49(0)40-42878 4430; E-mail: shehata@tu-harburg.de

2

relative acceleration in the goal potential field. Li, Cui, and Lu [7] also included
the goal distance in the obstacle potential. However, the repulsive potential was
modified to change exponentially with the distance from the obstacle. The
exponential decrease of potential around the obstacle can however cause the
paths to be very close to obstacle raising safety issues. To tackle this situation, a
virtual obstacle concept for obstacle avoidance was proposed by Shehata and
Schlattmann [8]. A robot size factor was introduced in the virtual obstacle
potential field. The work described in [8] was further extended for motion
planning in dynamic environments [9].

2. Motivations and Objectives

Many researchers have aimed at modifying the APF to overcome the limitations
faced in the conventional APF. Several works have included the concept of a
safe distance around the obstacles by introducing parameters which can be
varied to allow different levels of clearance. But very few of them have actually
calibrated the respective parameters to allow different safety margins depending
upon the application. The current work aims at optimized path planning using
artificial potential field and virtual obstacle method described in [8]. For safety
of the robot in real time implementation, it is advisable to maintain a minimum
distance around the obstacle and to maneuver efficiently without oscillations.
Several test cases are used to demonstrate the validity of the optimized
parameter values in different static scenarios using MATLAB.

3. Multi-Objective Optimization using NSGA-II

3.1. Background

The Classical APF method is a gradient descent method used for robot path
planning. The obstacles in the workplace are represented by a repulsive potential
field. The goal is represented by an attractive potential field. The potential
function can be considered as energy and hence the negative gradient of the
potential function is the force vector pointing in the direction of decreasing
potential. For a robot located at qr = [xr yr]T, a goal located at qg = [xg yg]T and
the obstacles are located at qoi = [xoi yoi]T, where i = 1,2,3,..,n and n denotes the
number of obstacles. The attractive force Fatt(qr) and the repulsive force frepi(qr)
from the ith obstacle are given by (1) and (2), respectively.

𝐹𝑎𝑡𝑡(𝑞𝑟) = 𝜁�𝑞𝑔 − 𝑞𝑟� (1)

3

𝑓𝑟𝑒𝑝𝑖(𝑞𝑟) =

⎩
⎪
⎨

⎪
⎧𝜂 �

1
𝜌�𝑞𝑟 ,𝑞𝑜𝑖�

−
1
𝜌𝑜
�

�
1

𝜌2�𝑞𝑟 ,𝑞𝑜𝑖�
� ∇𝜌�𝑞𝑟 , 𝑞𝑜𝑖�, if 𝜌�𝑞𝑟 ,𝑞𝑜𝑖� ≤ 𝜌𝑜

0, otherwise

 � (2)

where ζ and η are positive scaling factors, ρ(qr, qoi) is the minimum distance
from the robot to the ith obstacle, ρo is a positive constant denoting the distance
of influence of the obstacle, and ∇ρ(qr, qoi) is a unit vector pointing from the ith
obstacle to the robot. The virtual obstacle concept was proposed in [8]. The
force from this virtual obstacle is similar to that of a real obstacle but altered by
a positive scaling factor, λ. The force due to this virtual obstacle is as follows:

𝑓𝑣𝑜(𝑞𝑟) =

⎩
⎪
⎨

⎪
⎧𝜂 �

1
λ
∙

1
𝜌(𝑞𝑟 ,𝑞𝑣𝑜)−

1
𝜌𝑜
�

�
1
λ2
∙

1
𝜌2(𝑞𝑟 ,𝑞𝑣𝑜)�∇𝜌(𝑞𝑟 ,𝑞𝑣𝑜), if 𝜌(𝑞𝑟 ,𝑞𝑣𝑜) ≤ 𝜌𝑜

0, otherwise

� (3)

where, fvo(qr) denotes the repulsive force from the virtual obstacle, ρ(qr, qvo) is
the minimum distance from the robot to the virtual obstacle, and ∇ρ(qr, qvo) is a
unit vector pointing from the virtual obstacle to the robot. It can be seen from
(3), as λ increases, fvo(qr) decreases and vice versa. The direction of the virtual
obstacle is located along the extension line from the goal to the robot and in the
opposite side of the goal. This location prevents the robot from falling into local
minima or oscillations anymore and enhances the movement toward the goal.
The position of virtual obstacle is given by:

𝜌(𝑞𝑟 ,𝑞𝑣𝑜) =
𝜌�𝑞𝑟 ,𝑞𝑔� + min �𝜌�𝑞𝑟 ,𝑞𝑜𝑖��

2
 (4)

where ρ(qr, qg) and min(ρ(qr, qoi) are the distances from the robot to the goal and
to the closest obstacle, respectively.

For the rest of this work, the following assumptions are considered: 1)
maximum distance ρo up to which the obstacle potential acts on the robot is 2m,
and 2) maximum allowable step size for a robot = the radius of the robot, Rr.
The reader has to notice that the maximum allowable step size refers to the
maximum travel per each instant.

4

3.2. Optimization of the Robot Size Factor, λ

Consider a 2D workspace with a point robot located at qr = [0.5 1]T, an obstacle
at qo = [1.5 1]T and the goal (target) located at qg = [2 1]T as shown in Figure 1.
As can be seen, when λ = 0.5, the robot follows a longer detour around the
obstacle while for λ = 0.3, it moves very close to the obstacle. The value of λ
can thus be adjusted depending on the size of the robot and the required
clearance of the path from the obstacle. For a very small value of λ, the repulsive
force from virtual obstacle dominates significantly over the normal obstacle
force causing the robot to move close to the obstacle. A suitable value of λ is
therefore a compromise between safety of robot and the length of path.

Figure 1. The influence of the robot size factor Figure 2. A simple test case for a static
on path’s length environment

Considering the drawbacks in classical potential theory, placing the goal
very close to the obstacle would be a better option for the test case. All these
conditions can be tested during the robot run in the test case shown in Figure 2.
To avoid a local minima situation due to the robot, the obstacle and the goal are
all collinear; the obstacle is placed at a small offset of 0.1m. For a given robot
size, λ should maneuver the robot at the desired safety margin and avoid
oscillations in the robot motion. A fitness function is created for the paths that
take into account both these conditions. The fitness function comprises of 2
objectives:

❶Distance: This objective helps to maintain a safety margin around the
robot. A variable safe is calculated at each position of the robot path:

𝑠𝑎𝑓𝑒 = 𝜌�𝑞𝑟 ,𝑞𝑜𝑖� − 𝑅𝑟 − 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 (5)

Safe < 0 implies the robot is within the safety margin. Safe = 0 implies the
robot is exactly at a safety margin. Safe > 0 implies the robot is outside the
safety margin. Therefore, for all positions of the robot for which safe < 0, a high
penalty w is placed on it. That means if safe < 0, then safe = safe *w.

5

Figure 3. The robot’s path for the test case with Figure 4. Test case with λ = 0.8; step size =
λ = 0.64; step size = 0.1m 0.25m

Figure 3 shows enlarged view near the goal of the path of a robot with
diameter 0.4m. λ = 0.64 and step size = 0.1m. The value safe is calculated only
for the robot positions from A to B. Before position A, the robot is at a distance
larger than the required clearance. After position B, it is at a distance larger than
the radius and moving away from the obstacle. Since we wish to minimize the
fitness function, all paths very close to the obstacle and very far from it should
have higher values. Paths which are at a distance nearly equal to the safety
margin should have lower values.

𝑑 = � �
𝑠𝑎𝑓𝑒
𝑆 �

2

𝑝𝑎𝑡ℎ

 (6)

where S is a normalizing factor. Since the obstacle potential acts to a maximum
distance of 2m, S = 2.

❷Angle:

where astep is the angle between any two consecutive path segments. Since
astep corresponds to the change in the direction of the robot between two
consecutive steps; a turn with ±π radians is acceptable. Therefore, astep is
normalized by π as shown in (7).

 This parameter is used to minimize oscillations. We consider the
angle between the two consecutive path segments, e.g. A and B as shown in
Figure 4. It shows the enlarged view as the robot of diameter 0.5m approaches
the obstacle. The value is maintained within ±π radians. We formulate the
parameter alphapath as in (7):

𝑎𝑙𝑝ℎ𝑎𝑝𝑎𝑡ℎ = � �
𝑎𝑠𝑡𝑒𝑝
𝜋 �

2

𝑝𝑎𝑡ℎ

 (7)

Fitness function: The fitness function considered here is as follows:

𝐹 = 𝑤1. 𝑎𝑙𝑝ℎ𝑎𝑝𝑎𝑡ℎ+ 𝑤2. 𝑑 (8)

6

where w1 and w2 are the weights assigned to alphapath and d, respectively. The
weighting functions w1, w2 and w can be varied for different robot sizes to obtain
a good minima condition. After several trials, it was observed that w1 = w2 = 1
and w = 20 gives optimal values of λ. The test case is run for values of λ which
varies in the range [0, 1]. d and alphapath have to be calculated for each robot
path according to the value of λ. Figure 5 shows the plots of the objectives d and
alphapath, the fitness function and the test cases.

Figure 5. Plots of objectives (top), fitness function (middle) and test case paths (bottom) for robot
diameter 0.3m (left) and 0.4m (right)

ob
je

ct
iv

e
va

lu
es

ob
je

ct
iv

e
va

lu
es

lambda lambda

fit
ne

ss

lambda lambda

fit
ne

ss

7

3.3. Optimization of λ and η

Figure 6 (a) shows the test case for the robot diameter 0.7m moving at a step
size of 0.35m at a safety margin = radius =0.35m. The optimal lambda value
generated is 0.8. It can be seen that the robot enters significantly within the
safety margin. Since λ affects the force from virtual obstacle which points in the
direction of the goal, optimizing λ alone would imply optimizing the push
towards the obstacle to shape the path. On the other hand, η is a multiplying
factor in the obstacle potential and hence the repulsive force. Therefore, if λ and
η are both simultaneously modified, it should create a push-pull effect on the
robot generating a safer and smoother path. The objectives and the fitness
function are kept the same. The test case is run for all combinations of λ varying
in (0, 1) and η in (1, 6). Again we attempt to minimize the fitness function which
will correspond to the ideal values of λ and η. On running this algorithm for the
same test case, the values obtained are λ = 0.6 and η = 5.15. Figure 6 (b) shows
the path generated using these values. While the length of the path has been
increased in comparison to the earlier run, it is a safe path. In Figure 7 (a), the
robot of diameter 0.8m is moving with a step size of 0.3m maintaining a safety
margin = radius = 0.4m. Figure 7 (b) shows the test run for a 0.5m diameter
robot moving at 0.1m step size.

(a) Optimizing λ (b) Optimizing λ and η

Figure 6. Test case for robot diameter 0.7m with a safety margin of 1*radius

Figure 7. Test case for different parameters combinations

8

3.4. Optimization of λ, η and Step Size

It would be more convenient if the objectives are simultaneously optimized for
different values of step size. We only need to find optimal values of λ and η for
varying step sizes. Objective d is kept the same as in (6) except for w = 3. For
objective alphapath, the value astep is calculated as described in section 3.2
with the following modification:

𝑖𝑓|𝑎𝑠𝑡𝑒𝑝| >
π
2 ; 𝑡ℎ𝑒𝑛 𝑎𝑠𝑡𝑒𝑝 = 5. |𝑎𝑠𝑡𝑒𝑝| (9)

where |astep| is the absolute value of astep and the weighting factor 5 is set
intuitively to impose a high penalty on turning angle greater than 90o. An
additional penalty is imposed on astep:

𝑖𝑓 𝑠𝑎𝑓𝑒 < 0.04; 𝑡ℎ𝑒𝑛 𝑎𝑠𝑡𝑒𝑝 = |𝑎𝑠𝑡𝑒𝑝| + 100𝜋.
(−0.04 − 𝑠𝑎𝑓𝑒)
𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 (10)

A very small value of λ will result in a nearly straight line path with large d
values and small astep at each step along the path. Equation (10) ensures that
these steps in the path that lie more than 0.04m inside the safety margin are
penalized to have high astep and therefore high alphapath values given by:

𝑎𝑙𝑝ℎ𝑎𝑝𝑎𝑡ℎ = � �
𝑎𝑠𝑡𝑒𝑝
𝜋 �

𝑝𝑎𝑡ℎ

 (11)

Consider a robot of radius = 0.35m moving at a step size of 0.7*radius.
Allowing η values = 1, 3, 5, 7 and 9 and λ ϵ (0, 1) (at intervals of 0.1), the values
of d and alphapath are calculated for the test case and plotted in Figure 8. The
safety margin = 0.75*radius. A desired value of λ and η would minimize d and
alphapath and would therefore lie in the lower left corner of the plot. Points
along the Pareto front imply a trade off between the objectives. The Non-
dominated Sorting Genetic Algorithm II (NSGA-II) described in [10] can be
used to identify this Pareto front. If the step size is also varied in the plot of
Figure 8, we get a 3D graph as shown in Figure 9. NSGA-II is explained in
algorithm 1.

Algorithm 1: NSGA-II optimization of λ and η for different step sizes
Input: robot diameter, maximum allowable step size, clearance margin,

crossover and mutation rates, population size (N) and maximum
number of generations.

Output: set of combinations of λ, η and step sizes
1. Generate a random population of size N with λ ϵ (0, 1), η ϵ (0, 6) and

step size varying discretely from 0.1*radius to 1*radius. This is the
parent population for the first generation.

2. Run the test case for each member of the parent population and
calculate d and alphapath for each member.

9

3. Perform non-dominated sorting of the population.
4. Determine crowding of the members based on step size and η density.
5. Select N pairs of parents from the population through roulette and

binary selection based on non-dominated ranks and step size and η
crowding.

6. Perform crossover and mutation on each pair. Repeat the process till a
new population of size N is generated.

7. Merge the new and parent population together forming a total size of
2N.

8. Repeat step 2 and step 3 for the new population of size 2N.
9. Select N parents to produce the next generation based on non-

dominated rank and crowding.
10. Generate a new set of individuals by performing step 5 and 6 on these N

parents.
11. If the number of generations has exceeded the maximum number of

generations, then stop. Else repeat the steps 7-11.
12. Repeat the steps 6-8 on the last generated population.

Figure 8. Enlarged view showing Pareto front Figure 9. 3D plot of d, alphapath and step
size for robot diameter 0.6m

4. Conclusion

The optimization of the parameters involved in the potential functions is carried
out to ensure a safe path around the obstacles in a workspace. In case of static
environment, the parameter λ of virtual obstacle is first optimized. It is observed
that the optimization of a single parameter does not always succeed in keeping a
safe distance from the robot. As a result, η and λ are simultaneously optimized.
The resulting values obtained improve the safety of the robot around obstacles.
However, a robot does not move at a constant step size during its motion. For
identifying the values of the two parameters at different step sizes, the procedure
needs to be repeated multiple times. To avoid this, the Non Dominated Sorting
Algorithm II (NSGA II) is used to obtain the values of λ and η for multiple
discrete step sizes. The combination of parameters thus obtained enables the
robot in the test case to move around the obstacle while staying at the desired

al
ph

ap
at

h

d

al
ph

ap
at

h

step size

10

distance from the obstacle. This provides a method of dynamically changing the
force field around the robot without any heavy computational cost incurred
during real time motion.

References

1. O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots, International Journal of Robotics Research, 5, 90 (1986).

2. Y. Koren and J. Borenstein, Potential Field Methods and their Inherent
Limitations for Mobile Robot Navigation, in Proceedings of the IEEE
Conference on Robotics and Automation, Vol.2, pp.1398–1404,
Sacramento, California (1991).

3. Y. Zhu, T. Zhang, and J. Song, An Improved Wall Following Method for
Escaping from Local Minimum in Artificial Potential Field Based Path
Planning, in Proc. of the 48th IEEE Conference on Decision and Control,
pp. 6017–6022, (2009).

4. Q. Jia and X. Wang, Path Planning for Mobile Robots Based on A Modified
Potential Model, in Proc. of the International Conference on Mechatronics
and Automation, pp. 4947–4952, (2009).

5. J. Velagic, B. Lacevic, and N. Osmic, Efficient Path Planning Algorithm for
Mobile Robot Navigation with A Local Minima Problem Solving, in Proc.
of the International Conference on Industrial Technology, pp. 2325–2330,
(2006).

6. L. Yin and Y. Yin, An Improved Potential Field Method for Mobile Robot
Path Planning in Dynamic Environments, in the 7th IEEE World Congress
on Intelligent Control and Automation, pp. 4847–4852, (2008).

7. C. Li, G. Cui, and H. Lu, The Design of An Obstacle Avoiding Trajectory
in Unknown Environment Using Potential Fields, in Proc. of the
International Conference on Information and Automation, pp. 2050–2054,
(2010.

8. H. H. Shehata and J. Schlattmann, Mobile Robot Path Planning and
Obstacle Avoidance Based on a Virtual Obstacle Concept, in Proceedings
of the 21st International Conference on Flexible Automation and Intelligent
Manufacturing, Vol. 2, No. 1, pp. 905–914, Taichung, Taiwan (2011).

9. H. Shehata and J. Schlattmann, Reactive Algorithm for Mobile Robot Path
Planning Among Moving Target/Obstacles by Means of Dynamic Virtual
Obstacle Concept, in Proc. of the 22nd International Conference on Flexible
Automation and Intelligent Manufacturing, pp. 563–574, (2012).

10. K. P. Deb, A. S. Agarwal, and T. Meyarivan, A Fast Elitist Multiobjective
Genetic Algorithm: Nsga-II, IEEE Transactions on Evolutionary
Computation, 6, 182 (2000).

	1. Introduction
	2. Motivations and Objectives
	3. Multi-Objective Optimization using NSGA-II
	Background
	3.2. Optimization of the Robot Size Factor, λ
	3.3. Optimization of λ and η
	3.4. Optimization of λ, η and Step Size

	4. Conclusion

